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Abstract— Based on the concept of the energy-momentum tensor, the paper derives the conservation
laws relevant to free energy and complementary free energy of clectro-magneto-elastic media. From
those laws, the path-independent integrals are presented. Other laws and associated integrals are
also introduced. Some integrals are evaluated to obtain the energy release rate for the mode 111
electro-magneto-elastic fracture problem.

1. INTRODUCTION

Since the J integral was introduced by Rice (1968) and widely applied in linear as well as
non-linear fracture mechanics. the path-independent integral has received more and more
attention. For the linear elastic media. the path-independent integrals can also be derived
from conservation laws with the aid of Noether’s theorem. as was done by Knowles and
Sternberg (1972) and Fletcher (1976). Another method was introduced by Eshelby (1975)
who deduced the path-independent integrals on the concept of the energy-momentum that
first appeared in the classical electric field theory (Landau and Lifshitz, 1975). Cor-
responding to the path-independent integral. Bui (1974) set forward the dual path-inde-
pendent integral associated with the elastic complementary energy, whereas Xu (1988)
gave the dual conservation laws and more general dual path-independent integrals for
elastostatics.

From Eshelby’s method with the energy-momentum tensor. we can also obtain the
conservation laws for electro-magneto-elastostatics provided that a state function. such as
the strain energy and complementary energy in elastic theory. is independent of the position
of the material point. or the material is homogeneous. As a consequence, the path-inde-
pendent integrals and the associated energy release rate are obtained without any difficulty.

2. FUNDAMENTAL EQUATIONS

On account of the classical electromagnetic field and elastic theory. the fundamental
equations for electro-magneto-elastic media are composed of

E=—op (la)

B =e¢,A, (1b)

g, = (u,+u;,)2 (small deformation) (1¢)
D, =0 (1d)

e .t =10 (le)

6, =0. (1f)
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where ¢, E; and D, are the electric potential, electric field and electric displacement, respec-
tively. A;, B, and H, are denoted as magnetic potential vector, magnetic induction and field,
u, &, and o, represent the displacement, strain and stress tensors and e;;, is a permutation
tensor. An alternative combination of eqn (1) is

g, = (u,,+u,,}2 (small deformation)

D,=0
Br.r = 0
o, = 0. @

where i is the magnetic potential variable.
We define the state functions. free energy pf. pF and complementary free energy pg,
pG for linear material, to be

: . - s "
pf (8“, El‘ Br) = 3(1:U\'18I}8/\‘f - 177 E,l), - xxr?m BVB[) _a:/ekg[/’Ek - ats;‘;(‘gi/Bk - mi[mE‘iBj

pg(6,. D, H) = (= Eoi64+E5D.D, + ™ H H,) — E50,Dy — Ere Hy +EPDH,  (3)
and

pF(BlI’ EI‘ H!) = ]i([ 7;5/\'/81/8/\/ _[)’IE;“E,E/ +ﬁ:‘l]mH1H/) - 5?/61\'8[/'Ek +ﬁ?}2£i[Hk __ﬂ?/mE'Hj

i

pG(U,p D,.B) = '13( —Wiki0 84+ ’77/6DlD/ - ’7:],"“3[3/) _ﬂ?fko'ijDk _’17;?/:‘71/'3/( - ﬂng‘Bja 4)

where coeflicients o} }. f .|} and 5} | denote the characteristic of materials. Using the
electro-magneto-thermodynamic theory presented by Wang (1993), we can obtain the
constitutive relations as follows :

cpf cpf opf
=, Di=—-—0 H=-_ 5
G, Ce, E H 3B, (5a)
or
cpf cof cof
- E = ) Bi = — 5b
K ‘o, " ¢D, cH; (5b)
or
CoF CpF opf
==, D = — s Bi = =
i Ce, ' CE, 0H, ()
or
cpG _0pG _0pG
& = (ﬂ'd'” [ (—;D’ . Hi aB, (Sd)
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3. CONSERVATION LAWS RELEVANT TO FREE ENERGY

In the following. we assume that the media are all homogeneous electro-magneto-
elastic material. From the first definition in eqn (3) and the fundamental equation [eqn
(la—c)]. we have

wf) cpf Cpf ot
) = g gk T oA Wt it
PIVA = Hik <‘E,(p' 4B,e

A (6)

NN

i

Using the constitutive relation (5a) and the fundamental equation [eqn (1d-f)]. we arrive
at

(/)II).A = (6‘/u:,/\ + D/,(/)_H -+ eu‘m]{mAM\ ) (7)
Then we obtain the differential form of the first conservation equation
(‘[)f(')\;", —O — D P i ﬁe'm:HmA; W= 0 (8)

whose integral expression is

q:'(/)fok, —o,u,; — D/(P./\- - ex/m}ImAr_k )”/ d.&' = 0 (9)

Itis worth noting that eqns (8) and (9) hold if only the constitutive relation (5a) is available.
It implies that it is not necessary for pf'to meet equality (3a), so either eqn (8) or egn (9) is
suitable for the problems with non-linear constitutive relations provided that the state
function exists.

To proceed further. we define the energy-momentum tensor as

plAr = ,DIOA/ - Guul.A - D,‘(p.A * eumHmAi_A . (10)
When electric field is considered. we have
P, = E.D,—1ED3,,
which is just an energy-momentum tensor in the static field or the so-called Maxwell stress
tensor.
From the definition (3a) and the fundamental equation [egn (1a—c)], we obtain

(NP =3pf— (e, +D,p e, H,A, ). (1)

Considering eqn (1d—tf) and the free energy of a linear maternial

pf = e, + Do e, H,A,) (12)
we have the second conservation equation
['\-/pi/f\7£(61kul+D/\(p+et/\'nHmAy)] [ 0 (13)

whose integral expression is

n

¢['\‘/p|!/x - ;(611\'“1 + DAQD + e."\l?lH”lAr’)]’l/\’ d;\' = 0

v

or
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¢[\Apf— -\-;(aikur_,' + Dkw.; + etAmHmAl /) - '2 (alkul + DA(P +eikamAi)]nk dS = 0 (14)

Y

As a result of eqns (9) and (14). the path-independent integrals are

n
|

JH-. (p/()/./ *G,,u,(l‘ - D,V(pjx - e.'mrHrnA/.A )n/ dS

i

o

~

‘ [XA Pf“ -Y,r(al'kur_/ + D,k [ + e/AmHmA:.,') - ]E (G{/\'ui + D/‘({) + eikamAi)]nk ds' (15)

N

AM‘

Il

For a piezoelectric material. eqn (15) is turned into

n

Ji, J (pfo,, —a.u,, — D, n ds

Il

»

M, = |[xpf—x o4+ Do) ‘%(G/kui'*'Dk(P)]nk ds, (16)

v

where eqn (16b) 1s in agreement with that given by Pak (1990a,b). In addition, regardless
of the electromagnetic field, the path-independent integrals for elasticity are obtained and
are the same as those derived by Knowles and Sternberg (1972) and Fletcher (1976).

In elasticity, there is the third conservation equation (Knowles and Sternberg, 1972 ;
Fletcher. 1976 Xu. 1988) for linear isotropic materials. However, discussion of the third
conservation equation for an electro-magneto-elastic material is meaningless due to the fact
that there is no coupling between electricity. magnetics and elasticity for an isotropic
material as long as its microstructure possesses the same symmetry group for electric,
magnetic and elastic behaviour.

As is known, the static electro-magneto-elastic problem can also be determined by the
alternative fundamental group of eqn (1). i.e. eqn (2). When it is applied, together with eqn
(4a). it follows that

. (pF CpF CpF
(pF)i = e, u, . — CE @ i oH, Yo
- (auul.A +D,(P_A —B/lp.k),/: (17)

then another expression of the first conservation equation is

(pFo,,—o,n, —D;p,+Bp,), =0 (18)
and the energy-momentum tensor can also be defined as

P, = pFo,,—e.n, —D,p,+By,. (19)
Considering

pkF = ‘3(0411,,4 + D — B )

we obtain another expression of the second conservation equation :

R I _'E(GAAur—*_D/\@_Bklr//)].k =0. (20)

Therefore. the path-independent integrals are
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=
I

[(pF&ﬁﬂ,,u,_k =D+ B n,ds

»

= J ['“(pF- .\',(U,AU,J + Dl\ $;— BA‘/’,) - ‘:(arku: + Dk(p - Bkl//)]nk ds. (21)

<
1

4. CONSERVATION LAWS REFERRED TO COMPLEMENTARY FREE ENERGY

If the material is homogeneous and the state function pg feqn (3b)] is adopted, we
have

cpg Cpy cpy
09) s = b+ e D
(0g) éa, + cp, + C°H,

HLA’- (22)

With constitutive relation (5b) and the fundamental eqn (1a—<), eqn (22) is rewritten as
(Pg).l\ = - uz,/al/.l; - (p.,'DJ.A +e//m‘Am./HLA' (23)

Combining with the fundamental eqn (1d-f), the differential form of the first conservation
equation relevant to complementary free energy is

(f).(/‘s/u + urou.A + (PD/.A - e)/”lAIHHL/\ )./ =0 (24)

whose integral expression is
#(pgdl\/ + u,d’,,_;‘ + (PD,r.A ~'e;/m/\mlﬁll.l\ )’7/ dS = 0 (25)

Similarly to eqns (8) and (9), eqns (24) and (25) are still suitable for the media with a non-
linear constitutive relation provided that the state function pg exists.
Let us suppose the energy-momentum tensor 1s

Poi = pyo,, +we,  +oD,, —e, A, H, (26)
and considering the fundamental eqn (1), we can obtain
(XP-i) e = 3py. 27
Since
Py = 13( —U 64 — @ D +e, A, H).
the second conservation equation is described by
[Py + (0o, + 0D, — ey, A H) =0 (28)

whose integral expression is

&[-Y/phk +§(ulallx + (pDA - elA'm‘AmH:)]nk ds = 0 (29)

Y

Corresponding to eqns (25) and (29). the path-independent integrals are
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I (I’U‘j/\ e u'o-y,'.L @ [) LT er/mAu;HI_/\')”,' dS

~
It

~

\11 ’ [‘\‘A p.‘/+-\rr(uro-.‘/\ ,'+(ODL ' 7631\:“‘47711—11,1) +%(uloik +(PDA —elkmAmHi)]nk dS. (30)

i

For a pezoelectric material. eqn (29) 1s simplified into

»

S~
Il

(pyo,,+we,  ~oD, n,ds

v
n

M. = |[xpg+x(ue,  +oD )+ -; (wo, + @D, )In, ds. 31

v

Without regard to the electromagnetic field. eqn (31) is identical with that given by Xu
(1988). I eqn (31a) degenerates turther into a two-dimensional problem. Bui’s (1974) result
is obtained.

As the state function. complementary free energy pG, is applied together with the
fundamental egn (2). we have

G CpG . cpG CpG
(pG) . = o g, . D ik B, jk
B U.,O",’, i “"_(p,;D‘.A +¢./BI,A (32)

and the first conservation equation relevant to a complementary free energy is
(pGo, +ue, , +9,D,, —y,B,), =0 33

With reference to eqn (33). the reluted energy-momentum tensor can be defined as

P, = pUd, +ue,, +@D, — B, (34)
moreover
(v pay)s = 30G. (35)
Since
PG = (—u,0,— @ D+ By) (36)

the second conservation equation is introduced by
fvp.. - ;(“/0'“-. +oD, =Bl = 0. (37)

Consequent upon eqn (36). the path-independent integrals are

~

g, = . (pGI, +ue. .+ oD, —yB, i ds

Vo= ' [vipG+y(we, , +oD  —yB ) +§(u,a,k +@D, —yB,)]n, ds. (38)
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5. OTHER CONSERVATION EQUATIONS AND PATH-—INDEPENDENT INTEGRALS

In Sections 3 and 4, the free energy and the complementary free energy described in
Section 2 are taken as state functions. In fact, other state functions can also be applied to
obtain the conservation laws and the path-independent integrals, which are to be presented
without the procedure of derivation as follows.

Suppose that

: P e , R L,em
p.fl (81/’ DH H:) - i():;klsr/gk/ + /7/ D!D/ +'\l?/lmH1H/) + /l/LkslfD/s + /:;TSI/HA’ + /’1/ DIH/

pg.\ (o, E.B) = %( — 056,04 — 05 EE, — ()yr/nt,B,«) — 850, E, — 06, B, _BﬁrEan (39

where 7{ ) and 6 ) describe the character of materials. For convenience, the coefficients
introduced like y{ } and 6} are not explained again in the following. It is noted that the
state function pg, is indeed the internal energy of electro-magneto-elastic media.

From eqns (1) and (39), we have

(pfl (5/\/ —O U + (PD,r.k - ei/mAmHi.k)./ =0
[xkpfl +xf( - Ulkul.[ + (pDAJ AeikmAmHl_/') +;( — 00, + 3DA(P + 3e1kamAi)]J\' = 0

(pgl(sl\x +“/ai1.A - D/(pJ\ —ﬁe:/’mHmA‘k)./' = O

i

[X/\'pgl + -\’/(uio-ik/ - DA [ elkamA!./) + ;(Buialk + 3(PDL _eikamA!)].k = 0 (40)

and the corresponding path-independent integrals are

”

J}A— = (p/l (5/\'/ _Gl/ul.,\' + (pD/.A _ei/mAmHt.A )n/ d,\'

M3 = [xkpf] +x_/'(_drkul./+(|DD/\.lwer'l\mAmH1A/)+;(—'alku:+BDk(P+3eikamAi)]nk ds
r
J4A = (Pgl ék/ + uldll.l\ - D/q).k _ex/mHmAl.k)n/ dS

v
r

M4 = [xkpgl + 'Y/(ufa-lA./ - DA’()D,/‘ _e/kamAl,/) + ]: (3uiarA + 3(PDk AeikamAi)]nk ds' (41)

Supposing that

3 _ 1 .88 e mm .sm .em
pr (G'i/’ Ei' Hr) - 5( — Kijki0 ;O ""7/ Er'E/ + Kij H'H/) - ":;kauEk - h?/ko'i/Hk - kij EiH/

pg?. (81/3 Dr- BI) = IE (l'.77k/si/8k/ + lffDiD/ - l.?/-lm BiB/) + l'fka,/Dk - l‘?ﬁel/Bk - U?;nDiB/‘ (42)
From eqns (1) and (42). the conservation laws are described as

(pfl()A/ + uial;.A - D/(P.k - ei/'mAmHiﬂk)._/ = 0
[xk/).fl +.\'l(u,0',/\</ - DA @, _erkmAer./] + ;(3‘11611\ - Dl\@ + 3erkamAi)].k = O
(pgl(sk/ - alful./\' + (pD/.k _etijmALk).j = O

[xkpgl + xl( — Oy, + (PDA"_/‘ —€itm Hm AL/) + i{ — Oy W; + 3(PDI\ _elkamAf)].k = 0 (43)

and the corresponding path-independent integrals are
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Jo = ‘ (pf 0, +we,, Do, —e, Al nds

- [)/’ W, 7eu'-.mAer,,-) + %(311161'/\' - D/\'(P + 3erklnHmAl)]nk ds

ihy

M. = ‘ [x pfy+xAu06

Jo = | (py-0;, =60 +oD  ~e H, A Inds

A'[(v = ['\-L /)‘(/Z + >\‘/( — 0 ui.r + (P[)/«‘, - eu’\m HHIA(.,’) + I:( Adlkui +3(pDA

_e:’AmHmAi)]nk dS. (44)
If egn (1) is applied and eqn (4) is considered as a state function, we obtain
(f)f-‘skf — oW — D/'qo_k '—erijm Hl'.k).j =0
[>\VA f’l‘+ >\‘/( — 0, ur 5 D/\ (1‘0.,' - ey/\n:“xm }I).,r) + ;( - avkuf - Dk (p + 3el'km HmAl’)].k = 0

(I)G(SI-_; + ul'al/.A + (/)D/.k _er/mHmAl.k),j = 0
['\"\ ,“(/ + ‘\',(u,O",A_', + (01)»\ 0T el&.mHln'A_u,) + l(3urai/«’ + 3(PDI\ _e/km HmAI)].k = 0 (45)

and the corresponding path-independent integrals are

J-, = I (pFo,,—o,u, —D,p, - e.,1,H nds
)\/I‘ = ' I‘\VA'-f)[“+ -\rr( - O-ILu’_,‘ - [)h W, - e:l\r/:“\mH/.:) +é( 70’1/\“1 - D/\(p_'— 3eikamAi)]nk dS
Jo = ‘(p(id,\&u,al,_k +oD, —e, H,A On ds

M., = ‘[\,;;)(ler,\",(U,O',;. +oD, e, H, A,‘,)+g(3u,-0',k+3<pDA—e,k,,,H,,,A,)]nk ds. (46)

%

Certainly. it combining the above state function, and the fundamental eqn (2) is
applied. we can further achieve other conservation laws and the path-independent integrals
derived as in Sections 3 and 4.

6. THE ENERGY RELEASE RATE FOR MODE 11 FRACTURE

As shown in Fig. 1. for a crack in an infinite body subjected to out-of-plane defor-
mation. two kinds of boundary conditions are introduced on its face:

(), & =0 (traction-free)
1 =0 (of noresidence charge and negligible D, in crack)
H =0 (of no residence electric current and negligible H, in crack); 47)

(Iy ., =0 (traction-free)
D, =0 (of no residence charge and negligible D, in crack)
B =0 (negligible B, in crack). (48)

If the crack up tield 15 known. the energy release rate can be obtained by using the first
kind of path-independent integral. such as eqns (15a). (21a), (30a), etc.
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L
ONONONO,

G O DD

Fig. 1. The infinite body with a crack suffering from out-of-pline deformation.

Supposing

w, =u, =0 u =ufx.y)

@ = PN 1)

A =4 =0 1 =4 (1) (49)

and considering the boundary condition (47). we can obtain the electro-magneto-elastic
mode Il crack tip field (B2) derived in Appendix B. With the substitution of eqn (B2) into
the path-independent integral (15a). the energy release rate is

Jo= e KK = KR iy KPR 4o KYK' (50)

If the boundary condition satisfies eqn (48). the crack up field could be presented by eqn
(B4) (see Appendix B). Then the energy relcase rate s

g :;1(;‘,4/\"1\""( (KUK~ 0 KK (51)
If we add another supposition to the ficld. that s

o =u, =0 u =u(y.y)
®» = @(x.Y)

W= xoy) (52)

we can obtain the crack tip field (B6) and (B8) corresponding to the boundary condition
(47) and (48). respectively (see Appendix B). Referring to eqn (21a), the energy release rate
is

S = U KK~ KPR 4+ en KK (53)

and
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Jio= GOLKKY = KK 4t KYKY) 4 KK (KK gt KMKY. (54)

It is found that the energy release rates deduced from egn (30a). (41a.c), (44a.c) and (46a.c)
are all identical to eqns (50) and (51) as the crack tip fields (B2) and (B4) are considered,
whereas one derived from eqn (38a) is the same as eqn (53) or (54) as (B6) or (B8) is used.
Furthermore. eqns (51) and (53) show that the magnetic field makes no contribution
towards the energy release rate provided that the boundary condition (48) and the sup-
position (49). or (47) and (52) are adopted. Moreover, eqns (50), (51), (53) and (54) imply
that the electric field has a tendency to retard the growth of a mode I1I crack, but the
magnetic field has a contrary effect. It is also noted that no coupling appears between the
magnetic field and elastic or electric field in eqn (50) upon consideration of the boundary
condition (47) and the assumption (49).

T CONCLUSION

In light of the view of Eshelby’s energy-momentum tensor. the paper has presented
many kinds of conservation laws and path-independent integrals. Even though all state
functions are introduced to the quadratic form in the paper, the first kind of path-inde-
pendent integral. such as eqns (15a). (21a). (30a), (38a), etc. are still appropriate for the
non-linear electro-magneto-elastic media. 1t implies that the polynomial power of the state
function may reach more than two.

In addition. it is shown that the energy release rate for fracture can be easily obtained
by using the path-independent integral. The results further show that the the electric field
has an inclination to alleviate the energy release rate of an electro-magneto-elastic mode
ITT crack. but the magnetic field plays the inverse role on the crack.
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APPENDIX A: THE SOLUTION OF AN OUT-OF-DEFORMED BODY

In the tollowing. both fundamental equations (1) and (2) are applied in the solution of the out-of-plane
deformation problem for a transversely sotropic elasto-magneto-elastic medium. The normal of the plane
coincides with the Z-axis

Solution )
According 1o the constitutive relation (3ar. the relation for the transversely isotropic media can be simplified
to

o = [Chie) -le]" |E} -[f]"{B]
DL - fe]ie) — (€] JE} +[g]{B]
H = [flls) ~ [2]'E; +[u) {B]. (AD)

where
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61T = 10,,.0,,,0:,0.,.0.,,0,,
ey’ = b e Vo)
) - ID}T = 1D, D,.D.}
{Bj" = {B.B,.,B.;, H|"=I|H.H.H}]
l>('|\ Cia Uya 0 0 0 ‘1
G O O 0 0 0
e oax s 0 0 0
C=1% 0o 0o c. o0 0
0 0 0 0 44 0
0 0 0 0 0 (e —e2)i2
[0 0 0 0 ¢; O 0 0 0 0 fis O
e] = 0 0 0 €s 0 0. fl=1]0 0 0 fis 0 0
Les €1 €32 0 0 0 Iy fu s 0 0 0
e, 0 0] gn 0 0 —1
le] = 0 Cry 0. [gl= 0 gn 0
_ 0 0 [ 0 0 /A%
My 0 0
=10
0 0 !
Supposing

c=u, =0. w =u(x,r) (out-of-plane deformation)
0. A.=A.(x,¥), ¢ = @(x,}) (A2)

and substituting egn (A1) into the fundamental eqn (1d—f), we obtain

V46 Vo =0
e Vu.—¢, Vp=0
unV:A_— = 0. (A3)

Due to the arbitary choice of coefficients. eqn (A2) leads to

Viu =0, V=0, V4. =0 (A4)

From eqn (A4), we get
w.=ImU,(2)}. ¢ =1m[0 (2)]. 4. =Im[Q()], (A3)
where U,(z). @,(z) and Q(z) are complex potentials, - = v+1y. As a consequence, the strain, stress, electric field,

electric displacement. magnetic induction and magnetic field are described by
{‘/’;\ =Im{U\()]. 0., =Ime, U1(z) +e,:01(2)] + Re [ /152 (2)]
7= Re[U1(2)). 0. = Relca Ui (2) +€)5®(2)] ~ Im [ £15Q(2)]
~Im[®\(z)], D, =Imfe,U1(2)~€,,®(2)]-Re[g, ()]
—Re[®)(2)]l. D, =Rele,sUi(2)—€ PV (2)] +Im[g, Q'(2)]
~Rel@()].  H,=1m[f;U'(2)—¢g 1 ()] -~ Re [, Q'(2)]
Im Q' ()] H. =Re[fi;U1(2)—gn @ (D] +Im [p, Q¥ (@)]. (A6)

——
Mo,
oo

——
™ w
o

Solution 2
On account of the constitutive relation (5c), the transversely isotropic medium has

(o} = (C s} — "] (E} + [P H)
(D} = (e*) (e} +[e*] (E} + &) (H]
[B) = M]{e] ~ (8] (E} + (u*1{H). A7

where
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If. assuming.
u,=u =0, u =w(x,v) (out-of-plane deformation)
V=) o= ol ) (A8)
and substituting eqn (A7) into egn (2d ). we have
GV U+t Vo —fEVY =0
L’T\Vlu (.T\V:(P_.‘/T\V:l/’ =0
fENV U +gf Vie—pt Vg = 0. (A9)
Due to the arbitariness of the coefficients. eqn (A9) leads to
Viu =0, Vig=0. Vy=0. (A10)
From eqn (A10). we have
u. = Im (). ¢ =1m[@-(2)]. ¥ =Im[¥()]. (All)

where U;(z). ®.(2) and W(z) are complex potentials. It is worth mentioning that the assumption (A8) is not
synonymous with eqn (A2). As a consequence. the strain. stress, electric field. electric displacement, magnetic
induction and magnetic field are described by

vo=ImULO] e = Im[eR UL +el5P5 () — /1Y ()]

'

7= RefUi(9)]. 0. = Re[ef UL(2) +efs00s) — /1Y ()]

= =m0 D= Im et Usz) —e, D2(2) —gT ¥ (2)]
.= —Re[®3()]. D =RefefUs(0) —el @3(2) — g1, V'(2)]
B,
B

(
1

oy

71-1 —

= lm [/ U ) +gF O () —pt, ()]
= Re [/ UL+ (@) — 1 Y (). (A12)

(H. = ~Im[¥()].
1H, = —Re[¥ ().

APPENDIX B: THE MODE Il CRACK TIP FIELD

As shown in Fig. 1, if a crack in the infinite body suffers from out-of-plane deformation, two kinds of
boundary conditions on its face are described by egns (47) and (48). Clearly, the combination of eqns (AS5) or
(A11) with two kinds of boundary condition and application of the complex function theory will lead to the
solution of the mode IT crack tip field.

Solution 1
In light of the boundary condition (47} and eqn (AS5). we can obtain the solution in the following form

Uioy=A( =) 00 =Bz —a Y. Q2)=C(= —a)' 7, (BD)

where 4. B and C are complex coefficients which are determined by a remote load. When = — 4, the crack tip field
is given by
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2 {) (21 Y /2ry .8
w = K* f(f')sin;. o=K" ,‘(—i)sin—’a 4 =K°B /(A'>sm—
N 2 Vir) 2

JAT - VAT
K* il K i K® ¢}
= - sin,. K = —-sin B = ————cosy
N - NRZ NP2 2
® Kt f K*® 6
= - CO0S$ E =~ —cos;. B = —-——sin;
N2, NS ainr o2
caKS+e K0 K® & e Ko +e K 0 fisK® 0
0., = — . sin < —,TCos 3 a., = - ;+ p mi
\ 2w 2 2m 2 v 2mr < J2nr
D = _"1_51(’ - K 8 g.K f D _(’I_S_K’\’(HK Q_‘JHKB _9_
! 2 2 2m 2 l 2nr 2 Jr 2
1K g K" 0 Kb 0 KY =g, K* 0 K® 0
H = K g A sin - -cosy. H o= fih “Iu sz — KU sin—, (B2)
. 2 2 2 \2mr 2 Jamr 2

where
K*=4, na. K'=B, na K®=C Jna

If the boundary condition (48) 1s applied. it is found that Q' (z) is an analytical function wherever z is, even
on the crack, and

Uiy = A —a)' . ()= B(z —a ) =, Qo) = Ch. (B3)

where 4. 1s considered to be finite at |z| — »x . When = — «. the crack tip field is given by

W2y 0 RIS
. =K (~ )sln-7. o =K ( )sm—,. 4. =1m(c,)
VAT, s VAT, -
K o . K' 0
=~ —sinz. K = —-siny. B =0
\ 2nr 2 \ 2mr 2
K® [t . K' 0
o= — ¢osz. K o=—--——c¢osz. B =0
\ 2 2 \ 2 2
Kt e KY 0 K> +e s KE 0
6., = ~ —— ————S8iNlz. ¢ = —-———C0S=
{2 2 \ 2nr 2
e KY = Kb 0 e KS—¢ K" 0
D = - - L T S e
\ 2nr 2 \ 2ar <
fLlu K> =g, K" 0 f-K>—g, K" [¢}
H = - 'g—"—ﬁsm;. H, =" '—‘L'—“cos'» (B4)
\ 2 - N3 2
where
K= A, na. K' = B, ma.
Solution 2

Combining egn (A1) and the boundary condition (47). we find that ¥(z) is an analytical function everywhere,
and

U.Cr= A= —a)' ", Oy =Bz —a’)' ., W) =Cy, (BS)
where H | is taken to be finite on |z| — . When = — «. the crack tip field is

e\ 0
)smi. ¥ = Im(cy)

K 0
_77:"51“& H\ =0
-t
K [t
 meosy. H =0
\ 2
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K+t K ALK ekt 0
0., = — ——— sin-, 0., =——————C0S~
Vanr 2 J2nr 2
* Ks_ * Kk 9 ok S __ % KE
D, = — g—'—sw-f—il' sing, D= G2 "R osa
J2mr 2 J2mr 2
F K+t K 0 *KS+ghKE 0
B\z_/u g sine. B, =f|5 gn 0s~ . (B6)
2mr 2 J2nr 2

where
KS = 4.yna. KF =B, ma
On account of the boundary condition (48) and eqn (A11), we can obtain the solution in the following form

Uy(z) = A2 —d®) 2. @y(2) = By(22 —a™)' 2, W(2) = Co(22—d*)' *. (B7)

When = — «, the crack tip field is given by

Cif2r 0 1{2r U [(2r ]
=K [ Tsing. @=K* [[=)sing. ¢ =K" [[=|sins
u. 4<n>sm2 =K \j<n>sm2 =K \/(n)smz

\
K> 0 Kt o8
Yy = — Sin< = sin=, =-——sinz
omr 2 NPLI 2 2
Ks o K" 0 K" 0
Vo T TSImCOS S E = —-——cos;, H,=———cosz
2 2 V2mr 2 22
P ('§4Ks+?fsf_l;—f/>f<KH sinQ o = ch K5 +ets KE—f1 K Q
B V2nr 27 J2nr 2
D = _(’Ts S*f'?‘fo*yT;K“ . { D _FTSKSfCTIKE_gTIKHCOSQ
! Ni 2nr 2’ ' V/27tr 2
g IBKEGNK - pn Kt 0 fRKSRgKE—ph KT 0
' J2nr ' J2mr 2’
where
K= A, na, K" =B,Jjna. K" =C,Jna

(B8)



